Topological Material Analysis 0.5
Analyse the structures of materials using tools from TDA
|
Functions | |
read_configuration (str configuration_file, str configuration) | |
import a specified structure from a configuration file | |
read_computation_settings (str settings_file, settings_name) | |
read_sample (str structure_file, str configuration) | |
import a specified sample range from a configuration file | |
read_oineus_settings (str structure_file, str setting_name) | |
import settings for kernel/image/cokernel | |
sample_at (str file_path, str format, sample_index, int repeat_x, int repeat_y, int repeat_z, atom_list, radius_list) | |
Sample a structure at a particular time, with cell repetitions. | |
weighted_alpha_diode (points) | |
Use diode to fill the weighted alpha shapes. | |
convert_simps_to_oineus (list simplices) | |
Diode is set to create simplices for dionysus, so we need to convert them to the correct type for oineus. | |
oineus_compare (x, y) | |
Comparison to compare list of simplicies to get them in the order for oineus. | |
sub_complex (pd.DataFrame points, float z_upper, float z_lower) | |
Given the points, and the upper and lower thresholds in the 'z'-component. | |
oineus_filtration (pd.DataFrame points, oineus.ReductionParams params) | |
Given a set of points, compute the oineus.filtration of the alpha complex. | |
oineus_pair (pd.DataFrame points, list sub) | |
Given a set of points, and the points that are in the subset L, construct the complexes and map between them. | |
oineus_process (pd.DataFrame points, oineus.ReductionParams params) | |
Given some points with weights, and the number of threads to use, obtain the persistent homology of the weighted alpha complex of these points, using oineus. | |
oineus_kernel_image_cokernel (pd.DataFrame points, oineus.ReductionParams params, float upper_threshold, float lower_threshold) | |
Given points, and parameters for oineus, calculate the kernel/image/cokernel persistence as desired. | |
calculate_APF (dgm) | |
Calcualte the APF from a diagram. | |
load_configuration_settings () | |
load_computation_settings () | |
compute () | |
Variables | |
params | |
loaded | |
processed | |
plotted | |
file_path = st.text_input("Intial structure file:",key="file_path") | |
file_format = st.text_input("File format:", key="file_format",placeholder="Auto") | |
manual_config = st.checkbox("Manually specify configuration", key="manual_config") | |
config_file | |
key | |
config_name | |
atoms | |
radii | |
sample_index | |
repeat_x | |
repeat_y | |
repeat_z | |
manual_compute = st.checkbox("Manually specify settings for the computations (i.e number of threds, and if you want to compute kernel/image/cokernel)", key="maual_comp_config") | |
same_config_file = st.checkbox("The computation settings are in the same configuration file.", key="same_config_file") | |
comp_file | |
comp_name | |
kernel | |
image | |
cokernel | |
placeholder | |
n_threads | |
thickness | |
pd_checks = st.columns(3) | |
pd0 = st.session_state["pd0"] | |
pd1 = st.session_state["pd1"] | |
pd2 = st.session_state["pd2"] | |
apf_checks = st.columns(3) | |
apf0 = st.session_state["apf0"] | |
apf1 = st.session_state["apf1"] | |
apf2 = st.session_state["apf2"] | |
on_click | |
depracated_single_mode.calculate_APF | ( | dgm | ) |
Calcualte the APF from a diagram.
dgm | the diargam you want to calculate the APF for |
depracated_single_mode.compute | ( | ) |
depracated_single_mode.convert_simps_to_oineus | ( | list | simplices | ) |
Diode is set to create simplices for dionysus, so we need to convert them to the correct type for oineus.
simplices | a list of simplices from diode |
depracated_single_mode.load_computation_settings | ( | ) |
depracated_single_mode.load_configuration_settings | ( | ) |
depracated_single_mode.oineus_compare | ( | x, | |
y ) |
Comparison to compare list of simplicies to get them in the order for oineus.
x | simplex to compare |
y | simplex to compare |
depracated_single_mode.oineus_filtration | ( | pd.DataFrame | points, |
oineus.ReductionParams | params ) |
Given a set of points, compute the oineus.filtration of the alpha complex.
points | pd.DataFrame containing points and their weights |
params | oineus.ReductionParams which contains the settings for oineus |
depracated_single_mode.oineus_kernel_image_cokernel | ( | pd.DataFrame | points, |
oineus.ReductionParams | params, | ||
float | upper_threshold, | ||
float | lower_threshold ) |
Given points, and parameters for oineus, calculate the kernel/image/cokernel persistence as desired.
points | pd.DataFrame of the points, with columns 'x','y','z','w' corresponding to the coordinates and weights respectively |
kernel | boolean parameter to set if kernel persistence is calculated |
image | boolean parameter to set if image persistence is calculated |
cokernel | boolean parameter to set if cokernel persistence is calculated |
n_threads | number of threads to use in oineus |
upper_threshold | float, z-coordinate above which points are in the subcomplex |
lower_threshold | float z-coordinate below which points are in the subcomplex |
depracated_single_mode.oineus_pair | ( | pd.DataFrame | points, |
list | sub ) |
Given a set of points, and the points that are in the subset L, construct the complexes and map between them.
The subcomplex L will consists of all simplices whose vertex are in the subset.
points | pd.DataFrame containing the points and their weights |
sub | a list containing the indices of the points on which we construct the subcomplex |
depracated_single_mode.oineus_process | ( | pd.DataFrame | points, |
oineus.ReductionParams | params ) |
Given some points with weights, and the number of threads to use, obtain the persistent homology of the weighted alpha complex of these points, using oineus.
points | pd.DataFrame of the points, with colums 'x','y','z','w' |
params | oineus.ReudctionParams |
depracated_single_mode.read_computation_settings | ( | str | settings_file, |
settings_name ) |
depracated_single_mode.read_configuration | ( | str | configuration_file, |
str | configuration ) |
import a specified structure from a configuration file
configuration_file | path to the file to use for configurations |
configuration | name of the structure to use |
depracated_single_mode.read_oineus_settings | ( | str | structure_file, |
str | setting_name ) |
import settings for kernel/image/cokernel
file_path | path to the ini file containing the settings |
settings_name | name of the settings to use |
depracated_single_mode.read_sample | ( | str | structure_file, |
str | configuration ) |
import a specified sample range from a configuration file
file_path | path to the file to use for configurations |
sample_range | name of the structure to use |
depracated_single_mode.sample_at | ( | str | file_path, |
str | format, | ||
sample_index, | |||
int | repeat_x, | ||
int | repeat_y, | ||
int | repeat_z, | ||
atom_list, | |||
radius_list ) |
Sample a structure at a particular time, with cell repetitions.
atoms | initial configuration |
sample_index | time to sample at |
repeat_x | repetition in x dir |
repeat_y | repetition in y dir |
repeat_z | repetition in z dir @parm atom_list list of atoms in the config |
radius_list | list of radii to use for the atoms |
depracated_single_mode.sub_complex | ( | pd.DataFrame | points, |
float | z_upper, | ||
float | z_lower ) |
Given the points, and the upper and lower thresholds in the 'z'-component.
points | pd.DataFrame containing of the points. |
z_upper | float giving the upper threshold, any point above this is in the subcomplex |
z_lower | float giving the lower threshold, any point below this is in the subcomplex |
depracated_single_mode.weighted_alpha_diode | ( | points | ) |
Use diode to fill the weighted alpha shapes.
points | pd.DataFrame with columns 'x', 'y', 'z' for coordinates, and column 'w' with the weights. |
depracated_single_mode.apf0 = st.session_state["apf0"] |
depracated_single_mode.apf1 = st.session_state["apf1"] |
depracated_single_mode.apf2 = st.session_state["apf2"] |
depracated_single_mode.apf_checks = st.columns(3) |
depracated_single_mode.atoms |
depracated_single_mode.cokernel |
depracated_single_mode.comp_file |
depracated_single_mode.comp_name |
depracated_single_mode.config_file |
depracated_single_mode.config_name |
depracated_single_mode.file_format = st.text_input("File format:", key="file_format",placeholder="Auto") |
depracated_single_mode.file_path = st.text_input("Intial structure file:",key="file_path") |
depracated_single_mode.image |
depracated_single_mode.kernel |
depracated_single_mode.key |
depracated_single_mode.loaded |
depracated_single_mode.manual_compute = st.checkbox("Manually specify settings for the computations (i.e number of threds, and if you want to compute kernel/image/cokernel)", key="maual_comp_config") |
depracated_single_mode.manual_config = st.checkbox("Manually specify configuration", key="manual_config") |
depracated_single_mode.n_threads |
depracated_single_mode.on_click |
depracated_single_mode.params |
depracated_single_mode.pd0 = st.session_state["pd0"] |
depracated_single_mode.pd1 = st.session_state["pd1"] |
depracated_single_mode.pd2 = st.session_state["pd2"] |
depracated_single_mode.pd_checks = st.columns(3) |
depracated_single_mode.placeholder |
depracated_single_mode.plotted |
depracated_single_mode.processed |
depracated_single_mode.radii |
depracated_single_mode.repeat_x |
depracated_single_mode.repeat_y |
depracated_single_mode.repeat_z |
depracated_single_mode.same_config_file = st.checkbox("The computation settings are in the same configuration file.", key="same_config_file") |
depracated_single_mode.sample_index |
depracated_single_mode.thickness |